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INTRODUCTION

The future belongs to the
companies and people that turn
data into products.
Mike Loukides, O’Reilly Radar [1]

· Similarity search is
essential to overcome
the problem of infor-
mation overload.

Similarity search is a key technology for data scientists. It can be defined
as the retrieval of the “closest” objects to a query in a database. An object can
be a vector of d dimensions but it can also be a string of characters or even a
graph. There are no restrictions on the type of data you can process. New simi-
larity search applications are constantly being developed, ranging from language
translation systems [2] to intellectual property protection [3]. Similarity search is
regarded as an important tool to address the problem of information overload [4].
With this type of engine you can perform data classification. You can also accel-
erate existing machine learning algorithms. The information challenges of this
age require fast similarity search to support cost-effective data analysis.

· Our R-01 engine
provides the highest
performance and it is
very easy to use!

The simMachines R-01 engine provides outstanding performance and ease
of use. Our engine is a natural choice for those who require to handle large data-
sets, the goldmines of our times. In what follows, we give a brief introduction
to similarity search. In part 2 we experimentally compare our engine against
the popular method LSH (Locality Sensitive Hashing) [5] and other established
methods from the SISAP Metric Spaces Library [6]. We also test our engine on
a large data-set of 120 million DNA sequences.
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Introduction
:: 1.1 Background

· Skip to the bench-
marks (part 2) if you
already know about
similarity search.

Similarity search is known also as the nearest neighbor problem or the post-
office problem. A large number of similarity search algorithms [4, 7, 8, 9] exist.
A key concept in most of these indexes is the idea of metric space. For the space,
a distance function is defined to compare the similarity of two objects. The index
does not “know” the structure of the objects it is handling, it only has access to
a function that calculates the similarity between two objects.

:: 1.2 Metric Space

· Our engine also ac-
cepts functions that
are not metrics.

LetM = (D,d) be a metric space for a domain of objects D and d :D×D→R,
a total distance function that satisfies the following properties:

∀x,y ∈ D,d(x,y) ≥ 0
∀x,y ∈ D,d(x,y) = d(y,x)
∀x,y ∈ D,d(x,y) = 0 ⇐⇒ x = y
∀x,y,p ∈ D,d(x,y) ≤ d(x,p) + d(p,y)

To use the simMachines R-01 engine, the user must define a distance func-
tion d. This is the only piece of information required. Our product does not
assume any details about the structure of the objects. We allow distance func-
tions that do not comply with any of the previous properties. As long as the
distance consistently measures similarity, R-01 can handle it.

:: 1.3 Similarity Queries

Given a collection X ⊆ D, we define three type of similarity queries:

· k-nearest neighbor query (k-NN) returns the k closest elements to the
query object q. Formally, the set R ⊆ X such that |R| = k, for any x ∈ R
and any y ∈ X −R : d(q,x) ≤ d(q,y).

· Range query: Given q ∈ D and r it retrieves all the objects within distance
r, that is the set {x ∈ X |d(x,q) ≤ r}.

· Range k-NN query: the intersection of the previous two types of queries.
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Introduction
:: 1.4 The simMachines R-01 Similarity Search Engine

At simMachines, we have developed a new technique that outperforms by a large
margin other similarity search indexes. The engine is the result of 6+ years of
research. This section explains features present in the engine.

To use the simMachines R-01 engine, the user must provide a distance func-
tion. This distance function may follow the properties explained in the previous
section, but it does not have to be a metric. Our engine provides k-NN and
range k-NN queries. Despite decades of research, standard similarity search
indexes degrade considerably when the space to search has a high intrinsic di-
mension [10]. This problem is called the curse of dimensionality.

· Approximate simi-
larity search is often
as good the exact ver-
sion of the problem.

Since providing exact solutions to the similarity search problem is so diffi-
cult, some researchers [11, 12] have focused on providing approximate solutions.
In this context, the similarity search index is allowed to return a result whose dis-
tance to the query is at most c times from the closest result. The simMachines
R-01 engine can be configured to return exact solutions (c = 1) or approximate
solutions (c > 1). Both modes of operation can be accomplished at very high
speeds. A recall based configuration is also possible. R-01 can be set to return a
recall value x in average. Even when exact solutions are required, R-01 provides
superior performance as we shall see in part 2.

Many similarity search indexes [4] require to set complex parameters. They
also force the user to know in detail the characteristics of the index. With R-01 ,
the user focuses on instantiating the index in one line. The rest is carried by
insert, delete and search methods.
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BENCHMARKS

Data is the next Intel Inside
Tim O’Reilly

In this section, we evaluate the performance of the simMachines R-01 engine
in multiple scenarios.

:: 2.1 Evaluation

We evaluate the results using a cost measure. Let d# be the number of distance
computations evaluated for a query, and |DB| the number of elements in the
database. The cost is defined as d#

|DB| . Let RA be the approximate result set re-

turned by LSH or R-01 and R the exact result set. Recall is defined as |RA∩R|
|R| . Let

va be the approximate distance value returned and v the closest nearest neighbor
to a given query. The approximate error c is defined as va

v . We output the av-
erage results of 100 queries that were randomly selected and removed from the
original data-sets.

:: 2.2 Audio

· The audio data-set
is considered to be
of high dimensional-
ity [13].

We downloaded the audio data-set provided by the LSHKit project [13]. This
data-set contains 54000 vectors of 192 dimensions. We employed the Multi-
Probe LSH [14] implementation provided by LSHKit, and tuned it using the
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Benchmarks
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Figure 2.1: Performance of R-01 in the audio data-set. Target recall is set
to 80% in both methods. Cost is the ratio of distance computations mea-
sured over the total number of elements in the data-set. k is the number of
elements to be retrieved. [More recall is better]

tutorial provided by the author. LSHKit and R-01 were set to retrieve objects
with a recall of 80%.

Figures 2.1 and 2.2 summarize respectively the recall obtained for both meth-
ods and the cost involved. We can observe that R-01 provides the same recall
level or better than LSH while using an order of magnitude less distance compu-
tations.

It is worthwhile to mention that LSH employs about 8 hash tables with differ-
ent transformations to minimize the error. On the other hand, the simMachines
R-01 data structure is using only one index to achieve an order of magnitude
improvement.

:: 2.3 Vector Data-sets

· The SISAP Metric
Spaces Library [6]
contains well estab-
lished indexes, it is
used in similarity
search publications.

In this section, we test the performance of the R-01 engine when no error is
allowed. We compare our engine against indexes from the metric spaces li-
brary [6]. The following indexes are used:

· Fixed Height Queries Tree (fqh). A variant of the Fixed-Queries Tree [15]
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Figure 2.2: Performance of R-01 in the audio data-set. Target recall is set
to 80%. k is the number of elements to be retrieved. Cost is the ratio of
distance computations measured over the total number of elements in the
data-set. [Less is better]

which is in turn a variant of the Burkhard-Keller. The height of the tree is
restricted to h levels.

· Generalized Hyperplane Tree [16] and Bisector Tree [17] (ght). The im-
plementation is a mixture of the best features of both data structures.

· List of Clusters [18] (lcluster). A list of balls holding b elements on each
ball.

· Vantage Point Tree [19] (mvp)

· Spatial Approximation Tree [20] (sat). A self-adjusting Voronoi-like par-
titioning of the space.

· Linear AESA [21] (pivots). Employs i pivots to prune the search space.
This index is used as a baseline as it requires full scans on the projection
and therefore it cannot scale.

We ran our tests on the audio data-set (section 2.2), and the following data-
sets from the metric spaces library:
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Figure 2.3: Performance of R-01 in the audio data-set. k is the number of el-
ements to be retrieved. Cost is the ratio of distance computations measured
over the total number of elements in the data-set. [Less is better]

· nasa: 40150 vectors of 20 dimensions generated from NASA images [22]

· colors: 112544 color histograms of 112 dimensions [23]

In figures 2.3, 2.4 and 2.5 we show respectively the results of the experiments
for data sets audio, colors and nasa. The plots clearly show how R-01 consis-
tently outperforms all the other data structures. R-01 is 5× to 10× faster than the
other methods.

:: 2.4 Large DNA Data-set

· The genome is an
important and com-
plex data-set. Its
large size makes it
an excellent test envi-
ronment.

We extracted 120 million DNA fragments of 20 base pairs each from the human
genome data-set [24]. We indexed the fragments using the R-01 engine and
the permutation index (Perm) of Amato et al. [25]. We performed k = 5 nearest
neighbor queries setting the engine to return values within c = 1.4. We measured
different performance metrics as the database grows from 500000 fragments to
120 million fragments. We ran our tests on an Intel Xeon processor with 24GB
of RAM running Ubuntu Linux 10.04 64 bits and Java 1.6.0_24.

Figure 2.6 shows the quality result for the whole experiment. Our engine
fulfills the promise of answering results in average of c = 1.4. Perm returns
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Figure 2.4: Performance of R-01 in the colors data-set. k is the number of el-
ements to be retrieved. Cost is the ratio of distance computations measured
over the total number of elements in the data-set. [Less is better]
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Figure 2.5: Performance of R-01 in the nasa data-set. k is the number of
elements to be retrieved. The distance computation count is displayed in
the y axis. [Less is better]
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Figure 2.6: Result quality of R-01 and Perm in the DNA data-set for differ-
ent database cardinalities. The indexing methods were configured to return
in average c = 1.4. The average error c returned was recorded for each
database cardinality. [Values around c=1.4 are the expected result]

a lower c because it calculates more distance computations. Figure 2.7 shows
the average time in milliseconds for each query for different database cardinali-
ties. When the database reaches 120 million objects, R-01 answers queries in 23
milliseconds. On the other hand, Perm rapidly becomes slower as the database
grows.

· R-01 provides re-
liable result quality,
with robust scalabil-
ity on very large data-
sets.

It is our hope that these experiments convince you about the scalability of the
R-01 engine. Only in 20 milliseconds the engine is capable of answering queries
in a database of 120 million objects.
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Figure 2.7: Performance of R-01 and Perm in the DNA data-set for different
database cardinalities. The number of milliseconds elapsed for each query
was recorded and averaged between all the queries. [Less is better]
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CONCLUSIONS

The ability to take data to be able
to understand it, to process it, to
extract value from it, to visualize
it, to communicate it that’s going
to be a hugely important skill in
the next decades

Hal Varian, The McKinsey
Quarterly [26]

· R-01 provides the
highest performance
and ease of use.

In this white-paper we have explained general concepts related to similarity
search. We introduced the simMachines R-01 engine and we compared it against
popular similarity search schemes.

Our tests demonstrated that our engine is 10× faster and uses 10× less space
than LSH. Additionally, the engine achieves 5× - 10× improvements over well
established methods. We could verify that our engine answers queries in 20
milliseconds even in complex data-sets of 120 million objects.

Data analysis tasks required in a wide array of industry fields can now be
served by the simMachines R-01 high performance similarity search engine. R-
01 provides very high quality results on very complex search spaces at very high
speeds.
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Conclusions
:: About the Author

Dr. Arnoldo Müller-Molina has successfully applied similarity search tech-
niques to solve complex biological questions at the Max Planck Institute for
Molecular Biomedicine in Germany. Additionally, he has published peer-reviewed
articles related to similarity search [3, 27, 28, 29, 30]. Dr. Muller-Molina wrote
a popular open source similarity search engine during Google Summer of Code
2007 [31] and other open source projects [32, 33]. At Intel, he developed high
volume database applications employed in the analysis of factory production
data and corporate financial information. Arnoldo holds a PhD in computer
science from Kyushu Institute of Technology (Japan) where he specialized in
software similarity analysis for intellectual property protection and similarity
search data structures where he held a Monbusho scholarship from the Japanese
Ministry of Education, Culture, Sports, Science & Technology. He obtained a
computer science degree from Instituto Tecnológico de Costa Rica in 2001.
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