Efficient Similarity Search by Reducing I/O with Compressed Sketches

Arnoldo Müller-Molina and Takeshi Shinohara

Department of Artificial Intelligence Kyushu Institute of Technology (lizuka, Japan)

SISAP 2009

Table of Contents

Introduction

Proposed Technique

3 Experiments

Outline

Introduction

2 Proposed Technique

3 Experiments

Sequential Search

Dimensionality increases:

- For certain distributions and queries
 - Hierarchical indexes performance decreases
 - Sequential search is better
- Sequential Indexes:
 - VA-file [Weber 1998], IQ-Tree [Berchtold 2000]
 - LCluster [Chávez et al. 2005]
 - Distance Permutations [Chávez et al. 2008]
 - Sketches [Lv 2004] [Wang 2007] [Dong 2008]

What is a Sketch?

Object → binary string

Sketches: cheap sequential search

Compact representations, cheap distance estimators

Same sketch holds similar objects
 Hamming distance

 Native in hardware: XOR + bit pop. count

 Bucket access order determined by hamming distance
 Introduced by Lv, Charikar and Li in 2004

• Only for L_2 , L_1 spaces

Contributions of the Paper

- Sketches for general metric spaces
 Simple mapping, pivot selection strategy
- Speedup over AESA: up to 10x
- Speedup over Slim Tree: 100x 1000x
- Sketch compression is possible
 - Up to 1000x smaller than original data

Outline

1 Introduction

Proposed Technique

3 Experiments

Proposed Sketch Definition

Generalized Hyperplane Sketch (GHS)

Sketch for object $x \in D$, is a bit vector $\sigma(x) \in \{0, 1\}^m$, where each bit $\sigma_i(x)$ is:

$$\sigma_i(x) = \begin{cases} 0 & \text{if } d(p_{i0}, x) \le d(p_{i1}, x) \\ 1 & \text{if } d(p_{i0}, x) > d(p_{i1}, x) \end{cases} \quad \forall i = 1, 2, \dots, m$$

where p_{i0} , $p_{i1} \in D$ are pivots.

Example

Partitioning in string (Levenshtein) spaces

Pivot selection algorithm (rf01)

Prefer balanced partitions

 $P, Q \subseteq \mathcal{D}$: pivot sets Returns true if *P* is better than *Q*, otherwise false. 1: function $rf01(P = \{p_0, p_1\}, Q = \{q_0, q_1\})$ Get the difference of partition sizes: $st_{p} \leftarrow ||S_{p0}| - |S_{p1}||$ 2: $st_{a} \leftarrow ||S_{a0}| - |S_{a1}||$ 3: if $st_{\rho} = st_{\alpha}$ then \triangleright Equally balanced partitions 4: Greater inter pivot distance is better return $d(p_0, p_1) > d(q_0, q_1)$ 5: else 6: 7: return $st_{o} < st_{a}$ S better balanced with P? end if 8:

9: end function

k-NN Search

Find j closest sketches, search those buckets

Filter and refine:

- Find the closest *j* sketches
 - Search each bucket (sketch associated with bucket)
- How to find j?
 - In this paper: sampling (see annex)
 - Dong et al.: k × 20

Compression

Sketches can be efficiently compressed

- Sketches are positive integers
- Inverted index compression:
 - d-gaps, Gamma and Delta run length encodings
- Bitmap index compression:
 - Word aligned hybrid (WAH)

Outline

1 Introduction

2 Proposed Technique

3 Experiments

Experiments

Compression and Performance

Performance:

- Improvement Efficiency IE (speedup)
- IE over Slim-Tree [Traina 2000] and AESA [Vidal 1986]
- Comparison against L₂ sketch[Dong 2008], distance permutations [Chávez et al. 2008]

Compression (4 compression methods):

- GAMMA (*d*-gaps)
- DELTA (*d*-gaps)
- Bitmap
- Word Aligned Hybrid (WAH)

Evaluation

EP error position and different IE

Error position:

$$\mathsf{EP} = rac{\sum_{i=1}^{|\mathcal{S}^{\mathsf{A}}|}(\mathcal{OX}(o_{i}^{\mathsf{A}}) - \mathcal{S}^{\mathsf{A}}(o_{i}^{\mathsf{A}}))}{|\mathcal{S}^{\mathsf{A}}| imes |\mathcal{X}|}.$$

Improvement in efficiency IE (over Slim-Tree or AESA):

- *IE_{acc}*: disk access count.
- *IE*_{obj}: objects read from secondary storage.
- *IE_{dist}*: distance computations

Datasets

SISAP datasets and a synthetic dataset

Table: Summary of datasets.

Dataset	DB size	Size	m
dutch	200000	2MB	64
dict	800000	8MB	64
trees	100000	5MB	64
trees-full	300000	17MB	64
vectors	1 billion	223GB	30

Compressing sketches

Table: Compressed sketch size, search time

Data Set	Method	Size	Milliseconds
dict(2.4MB)	BitSet	134MB	151.73
	WAH	4MB	67.79
	Delta	1.1MB	23.97
	Gamma	1.2MB	28.67
trees-full(187Kb)	BitSet	134MB	151.73
	WAH	264Kb	5
	Delta	79Kb	2
	Gamma	92Kb	.72
vectors(1.7GB)	BitSet	134MB	14174
	WAH	131MB	20917
	Delta	251MB	10534
	Gamma	204MB	10890

rf01 IE over Slim Tree (Dutch)

(曰 〉 《母 〉 《문 〉 《문 〉 '문 ' '오이

rf01 IE over Slim Tree (Trees)

・ロト ・(部)ト ・(語)ト ・(語)ト ・ 語 ・ *

৽৶৻৻৽

Our Technique (rf01) IE over AESA

Datasets: trees, dutch

Data Growth (trees, dutch)

200

Conclusions

Up to 10x improvement over:

- L₂ sketch[Dong 2008]
- Distance permutations [Chávez et al. 2008]
- Up to 10x improvement over AESA [Vidal 1986]
- 10x-1000x over Slim-Tree [Traina 2000]
- Compression: 10x 1000x smaller than original data