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Sequential Search

Dimensionality increases:
For certain distributions and queries

Hierarchical indexes performance decreases
Sequential search is better

Sequential Indexes:
VA-file [Weber 1998], IQ-Tree [Berchtold 2000]
LCluster [Chavez et al. 2005]
Distance Permutations [Chavez et al. 2008]
Sketches [Lv 2004] [Wang 2007] [Dong 2008]
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What is a Sketch?

Object — binary string

10101...01
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Sketches: cheap sequential search

Compact representations, cheap distance estimators

Same sketch holds similar objects
Hamming distance

Native in hardware: XOR + bit pop. count
Bucket access order determined by
hamming distance
Introduced by Lv, Charikar and Li in 2004

Only for L,, L, spaces
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Contributions of the Paper

Sketches for general metric spaces
Simple mapping, pivot selection strategy

Speedup over AESA: up to 10x

Speedup over Slim Tree: 100x - 1000x
Sketch compression is possible
Up to 1000x smaller than original data
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Proposed Sketch Definition

Generalized Hyperplane Sketch (GHS

Sketch for object x € D, is a bit vector
o(x) € {0,1}™ where each bit oi(x) is:

m

cey

oy J 0 ifd(pio, x) < d(pi, x) ; _
7i(X) —{ 1 if d(pio. X) > d(pin, x) " 12

where pjo, pi1 € D are pivots.
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Example

Partitioning in string (Levenshtein) spaces
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blue surfboard gondwana  evangelion
fear world [economic]
[beautiful]l |[democracy] democracy  beautiful
=] =
evangelion | economic surfboard o
water gondwana [world]
blue water
fear (bl ]beamiﬁﬂ surfboard beautiful
ue
evangelion ~ water evangelion world
{i=3 | democracy [i=4] [blue]
democracy  surfboard [economic]
[world] water
economic  gondwana gondwana | fear

“fear” : “0101”
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Pivot selection algorithm (rf0O1)

Prefer balanced partitions

P, Q C D: pivot sets
Returns true if P is better than Q, otherwise false.

1: function rf01 (P = {p07p1 }7 Q = {q07 q1 })
> Get the difference of partition sizes:

2. sty ||Sp0l — | Spll

3 Sty [|Sqo| = |Sall

4: if st, = st, then > Equally balanced partitions
> Greater inter pivot distance is better

5 return d(po, p1) > d(qo, g1)

6 else

7: return st, < st; > S better balanced with P?

8 end if

9: end function
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k-NN Search

Find j closest sketches, search those buckets

Filter and refine:

Find the closest j sketches
Search each bucket (sketch associated with
bucket)

How to find j?

In this paper: sampling (see annex)
Dong et al.: k x 20
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Compression

Sketches can be efficiently compressed

Sketches are positive integers
Inverted index compression:

d-gaps, Gamma and Delta run length
encodings

Bitmap index compression:
Word aligned hybrid (WAH)
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Experiments

Compression and Performance

Performance:

Improvement Efficiency IE (speedup)

IE over Slim-Tree [Traina 2000] and AESA

[Vidal 1986]

Comparison against L, sketch[Dong 2008],

distance permutations [Chavez et al. 2008]
Compression (4 compression methods):

GAMMA (d-gaps)

DELTA (d-gaps)

Bitmap

Word Aligned Hybrid (WAH)
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Evaluation

EP error position and different IE

Error position:

£p_ L (OX(of) — S4(of)
[SAT X IX |

Improvement in efficiency IE (over
Slim-Tree or AESA):

IE ,cc: disk access count.
IEqp;: objects read from secondary storage.
IEist: distance computations
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Datasets

SISAP datasets and a synthetic dataset

Summary of datasets.

Dataset | DB size | Size m
dutch 200000 | 2MB 64
dict 800000 | 8BMB 64
trees 100000 | 5MB 64
trees-full | 300000 | 17/MB | 64
vectors | 1 billion | 223GB | 30
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Compressing sketches

Compressed sketch size, search time

Data Set Method | Size Milliseconds
BitSet 134MB | 151.73
WAH 4MB 67.79
Delta 1.1MB | 23.97
Gamma | 1.2MB | 28.67
BitSet 134MB | 151.73
WAH 264Kb | 5
Delta 79Kb 2
Gamma | 92Kb 72
BitSet 134MB | 14174
WAH 131MB | 20917
Delta 251MB | 10534
Gamma | 204MB | 10890

dict(2.4MB)

trees-full(187Kb)

vectors(1.7GB)
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Our Technique (rf01) /IE over AESA

Datasets: trees, dutch

k-NN rf01-trees-64 k-NN rf01-dutch-64
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Up to 10x improvement over:

L, sketch[Dong 2008]
Distance permutations [Chavez et al. 2008]

Up to 10x improvement over AESA [Vidal
1986]
10x-1000x over Slim-Tree [Traina 2000]

Compression: 10x - 1000x smaller than
original data
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