Financial Service Use Cases

simMachines supports financial services clients across a variety of use cases.

Customer Acquisition Credit Worthiness

An international bank client provides loans to small businesses. Our client needed a custom, predictive engine that would help quickly determine the credit worthiness of a small business owner.

Many systems and methods have been implemented to determine if a person is likely to pay back a loan or if they are capable of owning a credit card. The problem with these methodologies is that they are based on general models and theories that may not closely match the reality of a specific financial institution.

simMachines implemented an algorithm that could achieve the following:

  1. Predict the type of new customer being contacted: A++, A+, A, B,C,D
  2. Predict the number of times an operator would have to call the customer in order to collect payments

simMachines successfully created and deployed the solution in less than two weeks.

Machine Learning Fraud Detection

Top 3 financial institution wanted to speed up ability to implement ML fraud detection solutions for clients, enable continuous learning, and expose the factors driving the fraud.

ML methods did not continuously learn or expose the Why factors. Increased competition was creating a need to upgrade speed and service value to client.

Ensemble approach using gradient boosting and similarity-based machine learning.

70% increase over current fraud detection performance. Time to implement reduced from 6 weeks to 2 weeks. Continuous learning enabled, and the Why factors reported/available behind every prediction.

Compliance Monitoring

Global Exchange company deployed method of monitoring OTC submissions for rules-infringing transactions lacked sensitivity and required significant human capital.

Sparse clusters, inaccurate training data.

Ensemble approach using statistical and similarity-based machine learning.

50% increase in illegitimate transactions detected, 30% reduction in false positive rate.

Learn more about working with simMachines